Calcium requirements for exocytosis do not delimit the releasable neuropeptide pool.
نویسندگان
چکیده
Recently, it was proposed that secretory vesicles have widely varying Ca(2+) thresholds for exocytosis. This model can explain adaptation of secretory responses and predicts that incomplete release is a consequence of insufficient Ca(2+). However, membrane capacitance-based measurements have not supported varying Ca(2+) thresholds. Here, Green Fluorescent Protein (GFP) imaging is used to test whether a Ca(2+) limitation determines the size of the releasable neuropeptide pool in differentiated PC12 cells. We show that depolarization-evoked release correlates with failure to sustain fully elevated [Ca(2+)](i). However, this is coincidental because release remains incomplete when [Ca(2+)](i) is maintained at a relatively high level by application of an ionophore or by dialysis with a buffered Ca(2+) solution. Furthermore, in contradiction with the existence of high threshold vesicles, stimulating maximal release with moderate [Ca(2+)](i) prevents secretory responses to large increases in [Ca(2+)](i) induced by photolysis of the caged dimethoxynitrophenyl-EGTA-4 (DMNPE-4). Thus, optical measurements show that limited capacity for neuropeptide release in response to depolarization is not caused by an insufficient duration of [Ca(2+)](i) elevation or by variation among vesicles in Ca(2+) sensitivity for exocytosis.
منابع مشابه
The Immediately Releasable Pool of Mouse Chromaffin Cell Vesicles Is Coupled to P/Q-Type Calcium Channels via the Synaptic Protein Interaction Site
It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca(2+) channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca(2+) current. Accordingly, in the present work we found that the Ca(2+) current flowing through P/Q-type Ca(2+) channels is 8 times more e...
متن کاملSynaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study.
Synaptic ribbons are classically associated with mediating indefatigable neurotransmitter release by sensory neurons that encode persistent stimuli. Yet when hair cells lack anchored ribbons, the temporal precision of vesicle fusion and auditory nerve discharges are degraded. A rarified statistical model predicted increasing precision of first-exocytosis latency with the number of readily relea...
متن کاملSensitization of regulated exocytosis by protein kinase C.
Activation of protein kinase C (PKC) increases vesicular secretion in many cell types. We determined the calcium dependence of secretion and the size of the readily releasable pool of secretory granules in pituitary gonadotropes by photorelease of caged-calcium. The calcium affinity for exocytosis was roughly doubled by activation of PKC by a phorbol ester, whereas the size of the readily relea...
متن کاملTwo actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells.
Ribbon synapses of sensory neurons are able to sustain high rates of exocytosis in response to maintained depolarization, but it is not known how this is achieved. Using the capacitance technique, we have found that Ca(2+) regulates the supply of releasable vesicles at the ribbon synapse of depolarizing bipolar cells from the retina of goldfish. Ca(2+) had two actions that could be differentiat...
متن کاملSustained Exocytosis after Action Potential-Like Stimulation at Low Frequencies in Mouse Chromaffin Cells Depends on a Dynamin-Dependent Fast Endocytotic Process
Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell calcium
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2003